Synthesis and Herbicidal Evaluation of Novel $3-[(\alpha$-Hydroxy-substituted)benzylidene]pyrrolidine-2,4-diones

Youquan Zhu, Xiaomao Zou, Fangzhong Hu, Changsheng Yao, Bin Liu, and Huazheng Yang*
State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Abstract

A series of 3-[(α-hydroxy-substituted) benzylidene]pyrrolidine-2,4-dione derivatives were synthesized as candidate herbicides by reacting different aroyl acetates with N -substituted glycine esters. The new compounds were identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy and elemental analyses. Their herbicidal activities were evaluated. Some compounds exhibited excellent herbicidal activities at a dose of 187.5 g / ha. A suitable electron-donating substituent at the 2 - and/or 4-position of the phenyl ring was essential for high herbicidal activity, a result that has not been reported before. It was also found that the title compound's structure-activity relationships were different from those of other similar kinds of earlier compounds, a result that may depend on the enol structure difference.

KEYWORDS: Herbicide; aroyl acetate; HPPD; electron-donating group; structure-activity relationship (SAR)

INTRODUCTION

The inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) constitute a new kind of herbicide (1). Generally, potent herbicides of this kind must possess the following structural features: (1) a di- or tricarbonyl methane structure, with one of the carbonyl groups being a substituted benzoyl group; (2) the compound must be able to enolize so that the enolate is capable of inhibiting the HPPD enzyme by competitive combination with Fe^{2+}-the reaction center of the HPPD enzyme; (3) electron-withdrawing groups are preferred at both the 2 - and 4 -positions of the phenyl ring (2-4). In our previous work (5, 6), the natural product A (Figure 1), which was inhibitory toward HPPD with an $\mathrm{IC}_{50}=18 \mu \mathrm{M}(7)$, was modified to B (Figure 1) by the replacement of acetyl with substituted benzoyl, and the bioassay results showed that when R^{1} was electron-donating, compound \mathbf{B} possessed higher herbicidal activities and made the monocotyledonous plants Echinochloa crus-galli and Digitaria sanguinalis bleached. The analysis of their crystals confirmed that their molecular structures adopted the enol form B1 (Figure 1) and their molecular skeletons contained one enol hydrogen-bonded moiety, formed from benzoyl $\mathrm{C}=\mathrm{O}$ isomerization $(8,9)$. On the basis of the action mode of the HPPD inhibitors, the above phenomena revealed that an electron-donating group may not only be favorable to the formation of the enol tautomer B1 but also reinforce its combination with Fe^{2+}-the reaction center of HPPD-through raising the enol-oxygen's electron density. In the meantime, it was also found that when R^{1} at the phenyl ring was electron-donating and R^{2} at the nitrogen atom was

[^0]
A

B

B1

Figure 1. Chemical structures of \mathbf{A}, \mathbf{B}, and $\mathbf{B} 1$.
isopropyl, tert-butyl, or methyl, respectively, the N-isopropyl compound's herbicidal activity was the highest. To further amplify the structure-activity relationship (SAR) between R^{1} of B1 and the resulting activity and to find valuable lead compounds with high herbicidal activity, subsequent optimization of B1 was focused on varying the electron-donating capability of the substituent R^{1} while retaining the pyrrolidin-2,4-dione heterocycle. In this paper, we described the synthesis and herbicidal activities of some 3-[(α-hydroxy-substituted)-benzylidene]pyrrolidine-2,4-dione derivatives.

MATERIALS AND METHODS

Synthetic Procedures. Proton NMR spectra were obtained at 300 MHz using a Bruker AC-P300 spectrometer in CDCl_{3} solution with TMS as internal standard. Chemical shift values (δ) were given in parts per million. Elemental analyses were determined on a Yanaca CHN Corder MT-3 elemental analyzer. Melting points were taken on a Thomas-Hoover melting-point apparatus and were uncorrected. Yields were not optimized.

General Synthetic Procedure for D1-15 and E1-3. Solvents were dried according to standard methods and distilled prior to use. Compounds D1-15 were synthesized as the literature described (5, 6). Compounds $\mathbf{E} 1-\mathbf{3}$ were synthesized as the literature described (5, $6,10)$. All of them were identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The yields of compounds D1-15 are listed in Table 1.

Table 1. Yields of Compounds D1-19

compd	appearance	yield (\%)	compd	appearance	yield (\%)
D1	orange liquid	50	D11	orange liquid	30
D2	orange liquid	58	D12	orange liquid	43
D3	orange liquid	40	D13	orange liquid	43
D4	orange liquid	68	D14	white solid	45
D5	orange liquid	64.9	D15	orange liquid	66
D6	orange liquid	51	D16	orange liquid	82
D7	orange liquid	43	D17	orange liquid	87
D8	orange liquid	40	D18	orange liquid	89
D9	orange liquid	49	D19	orange liquid	82
D10	orange liquid	53			

General Synthetic Procedure for D16-19 (11). To a mixture of $\mathrm{NaH} /$ oil dispersion $(0.528 \mathrm{~g}, 50 \% \mathrm{NaH}$ by weight, 0.264 g of $\mathrm{NaH}, 11$ mmol), 12 mL of diethyl carbonate, and 15 mL of THF was added dropwise a solution of 10 mmol of substituted acetophenone in THF. The mixture was heated at reflux for 3 h . The reaction mixture was poured into water, the pH was adjusted to 9 , and the mixture was extracted with methylene chloride. The solvent was removed, and the residue was purified by flash silica gel chromatography using petroleum ether $\left(60-90^{\circ} \mathrm{C}\right)$ and ethyl acetate as the eluent to yield D16-19. All of the compounds were identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The yields of compounds D16-19 are listed in Table 1.

General Synthetic Procedure for F1-36 (5, 6, 12). A mixture of D $(4.11 \mathrm{mmol})$ and $\mathbf{E}(4.30 \mathrm{mmol})$ in dry xylene $(15 \mathrm{~mL})$ was heated at $125-130^{\circ} \mathrm{C}$ with stirring for 20 h . The cooled solution was added to methanolic $\mathrm{CH}_{3} \mathrm{ONa}$, prepared from Na metal ($0.10 \mathrm{~g}, 4.35 \mathrm{mmol}$) and methanol $(10 \mathrm{~mL})$ at room temperature with stirring. After the above mixture was stirred at room temperature for 48 h , water (30 mL) was added to the reaction mixture and the organic layer was separated and extracted twice with water. The original water layer and the extracts were combined and acidified to $\mathrm{pH} 2-3$ with 2 N HCl under cooling. The acidic solution was extracted three times with chloroform (30 mL), and the extracts were washed with saturated brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give crude product \mathbf{F}, which was purified by flash column chromatography on silica gel, using ethyl acetate-petroleum ether as the eluant to afford the pure target product. The melting points, yields, and elemental analyses of compounds F1-36 are listed in Table 2, and their ${ }^{1} \mathrm{H}$ NMR are listed in Table 3.

Bioassays. For comparative purposes, the herbicidal activities of the title compounds (F1-36) and the triketone compound, sulcotrione [2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione], were evaluated using a previously reported procedure (13).

Treatment. The emulsions of purified compounds were prepared by dissolving them in $100 \mu \mathrm{~L}$ of N, N-dimethylformamide with the addition of a little Tween 20 and proper water, and in glasshouse tests, it was sprayed using a laboratory belt sprayer delivering a $750 \mathrm{~L} / \mathrm{ha}$ spray volume. There were two replicates for each treatment. The mixture of the same amount of water, N, N-dimethylformamide, and Tween 20 was used as control.

Inhibition of the Root Growth of Rape (Brassica campestris L). Rape seeds were soaked in distilled water for 4 h before being placed on a filter paper in a $6-\mathrm{cm}$ Petri plate, to which 2 mL of inhibitor solution had been added in advance. Usually, 15 seeds were used on each plate. The plate was placed in a dark room and allowed to germinate for 65 h at $28(\pm 1)^{\circ} \mathrm{C}$. The lengths of 10 rape roots selected from each plate were measured, and the means were calculated. The percentage inhibition was used to describe the control efficiency of the compounds. The herbicidal activity is summarized in Table 4.

Inhibition of the Seedling Growth of Barnyard Grass (Echinochloa crus-galli L. Beauv). Ten E. crus-galli seeds were placed into a 50 mL cup covered with a layer of glass beads and a piece of filter paper at the bottom, to which 5 mL of inhibitor solution had been added in advance. The cup was placed in a bright room, and the seeds were allowed to germinate for 65 h at $28(\pm 1)^{\circ} \mathrm{C}$. The heights of the aboveground parts of the seedlings in each cup were measured and the means

Table 2. Melting Points, Yields, and Elemental Analysis of Compounds F1-36

compd	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	yield (\%)	elemental analysis (\%, calcd)		
			C	H	N
F1-4	see ref 6				
F5	146-147	59.5	66.32 (66.42)	6.58 (6.62)	4.92 (4.84)
F6	178-179	57.8	62.75 (62.94)	6.23 (6.27)	4.73 (4.59)
F7	134-135	53	70.33 (70.31)	6.95 (7.01)	5.21 (5.12)
F8	147-149	56.6	71.06 (71.05)	7.39 (7.37)	4.99 (4.77)
F9	141-142	61.2	71.77 (71.73)	5.59 (5.67)	6.05 (6.06)
F10	red liquid	64.5	70.35 (70.31)	6.93 (7.01)	5.10 (5.12)
F11	97-98	45.1	61.88 (61.88)	6.56 (6.63)	3.96 (4.01)
F12	orange liquid	50.0	60.22 (60.11)	5.09 (5.04)	5.11 (5.01)
F13	116-117	57.5	71.06 (71.05)	7.31 (7.37)	4.86 (4.87)
F14	106-107	43.2	72.15 (72.35)	8.01 (7.99)	4.49 (4.44)
F15	140-141	50.2	62.90 (62.94)	6.30 (6.27)	4.61 (4.59)
F16	orange liquid	63.2	71.31 (71.20)	5.72 (5.68)	4.22 (4.15)
F17	orange liquid	59.3	61.80 (61.88)	6.69 (6.63)	3.92 (4.01)
F18	orange liquid	84.8	61.88 (61.88)	6.63 (6.63)	3.85 (4.01)
F19	orange liquid	62.1	61.82 (61.88)	6.66 (6.63)	4.15 (4.01)
F20-21	see ref 6				
F22	119-121	21	70.99 (71.01)	7.44 (7.37)	4.82 (4.87)
F23	>141 decomp	18	71.49 (71.73)	7.89 (7.69)	4.61 (4.65)
F24	135-136	17	72.31 (72.35)	7.88 (7.99)	4.38 (4.44)
F25	174-176	8.0	63.90 (63.93)	6.60 (6.63)	4.41 (4.39)
F26	161-163	61.6	66.89 (66.88)	6.08 (5.96)	5.08 (4.88)
F27	152-154	58.9	63.65 (63.36)	5.69 (5.65)	4.53 (4.62)
F28	84-86	70.9	70.66 (70.83)	6.19 (6.32)	4.98 (5.16)
F29	133-135	61.0	65.91 (65.92)	5.51 (5.53)	5.12 (5.13)
F30	123-124	96.8	61.28 (61.25)	5.76 (5.74)	4.24 (4.20)
F31	112-113	57.9	71.35 (71.56)	6.53 (6.71)	5.01 (4.91)
F32	96-97	52.7	72.89 (72.82)	7.40 (7.40)	4.47 (4.47)
F33	brown liquid	66.5	63.23 (63.36)	5.59 (5.65)	4.59 (4.65)
F34	orange liquid	63.5	71.77 (71.63)	5.12 (5.11)	4.15 (4.18)
F35	orange liquid	87.5	62.35 (62.24)	6.15 (6.09)	4.15 (4.09)
F36	orange liquid	68.2	62.35 (62.24)	6.15 (6.09)	4.15 (4.09)

calculated. The percentage inhibition was used to describe the control efficiency of the compounds. The herbicidal activity is summarized in Table 4.

Pre-emergence. Sandy clay $(100 \mathrm{~g})$ in a plastic box $(11 \times 7.5 \times 6$ cm) was wetted with water. Fifteen sprouting seeds of the weed under test were planted in fine earth (0.6 cm depth) in the glasshouse and sprayed with the test compound solution.

Postemergence. Seedlings (one leaf and one stem) of the weed were sprayed with the test compounds at the same rate as used for the preemergence test.

For both methods, the fresh weights were determined 15 days later, and the percentage inhibition relative to the controls was calculated. The herbicidal activity is summarized in Tables 5 and $\mathbf{6}$.

RESULTS AND DISCUSSION

Preparations. The synthesis of intermediate β-keto esters \mathbf{D} using two methods (5, 6, 11) has been reported (Schemes 1 and 2). Compounds D1-15 were synthesized by treating ethyl acetoacetate with acid chloride followed by decomposition with $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{Cl}$. Because 2,4-dimethoxybenzoic acid and 2-/ 3-/4-methoxyethoxymethoxybenzoic acid were not stable under reflux with SOCl_{2} or reacted with $(\mathrm{COCl})_{2}$ at room temperature for the preparation of the corresponding benzoyl chloride of D16-19, we adopted the reaction of substituted acetophenone with diethyl carbonate in the presence of NaH .
Amino acid esters E1-3 were prepared conveniently from 2-bromoacetic acid ester and primary amines in dry ether (Scheme 3) (10). E1 ($\mathrm{R}^{2}=i$-Pr): yield, $40 \% ; n_{\mathrm{d}}{ }^{25}=1.4170$. $\mathbf{E 2}\left(\mathrm{R}^{2}=t\right.$-Bu $)$: yield, $65.4 \% ; n_{\mathrm{d}}{ }^{25}=1.4225$. $\mathbf{E} 3\left(\mathrm{R}^{2}=\right.$ cyclopropyl): yield, 87.4%; bp $94-90^{\circ} \mathrm{C} / 0.095 \mathrm{MPa} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.14-0.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.05-1.23\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$

Table 3. ${ }^{1} \mathrm{H}$ NMR of Compounds F1-36

compd	δ
F1-4	see ref 6
F5	$\begin{aligned} & 1.21,1.29\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40-1.50\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH} \mathrm{~N}_{2}\right), 4.08-4.18 \\ & \quad\left(\mathrm{qd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.91-7.10\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.32-8.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8 \mathrm{~Hz}, \mathrm{Ph}\right) \end{aligned}$
F6	$\begin{aligned} & 1.16-1.19\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{HHH}^{2}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}-\mathrm{H}_{2}\right), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\left(\mathrm{OCH}_{3}\right)_{2}\right), 4.35-4.70\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right) \text {, } \\ & \quad 6.79-6.97,8.00-8.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F7	$\begin{aligned} & 1.10-1.27\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.37-4.64\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right) \text {, } \\ & 7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F8	$\begin{aligned} & 1.16-1.43\left(\mathrm{~m}, 12 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.86-3.13\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{ArCH}\right), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.44-4.73 \\ & \left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=7 \mathrm{~Hz}, \mathrm{NCH}\right), 7.32-7.47,8.08-8.30\left(\mathrm{~m}, 4 \mathrm{H},{ }^{3}{ }_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right) \end{aligned}$
F9	1.13-1.22 (d, 6H, $\left.{ }^{3} \mathrm{JHH}_{\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.40-4.62\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right)$, $7.34-7.49\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 8.06-8.17\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3}{ }_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right)$
F10	$\begin{aligned} & 1.10-1.29\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.29,2.35\left(\mathrm{~s}-\mathrm{s}, 6 \mathrm{H}, \operatorname{Ar}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.35-4.62 \\ & \left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right), 6.92-7.28,7.26-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F11	$\begin{aligned} & 1.23-1.31\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.96\left(\mathrm{~s}, 9 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right)\right), 4.51-4.65\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right) \text {, } \\ & 7.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F12	$\begin{aligned} & 1.27-1.29\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.01\left(\mathrm{~s}, 9 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right)\right), 4.50-4.74\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right) \text {, } \\ & 7.31-7.62\left(\mathrm{~m}, 4 \mathrm{H},{ }^{3}{ }_{\mathrm{JHH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right) \end{aligned}$
F13	
F14	
F15	$\begin{aligned} & 1.23,1.25\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.83,3.86\left(\mathrm{~s}-\mathrm{s}, 6 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right)_{2}\right), 4.49-4.64 \\ & \left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right), 6.48-6.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.4 \overline{8}, 7.50\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{JHH}}=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}\right) \end{aligned}$
$\begin{aligned} & \text { F16 } \\ & \text { F17 } \end{aligned}$	
F18	$\begin{aligned} & 1.24,1.26\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \underline{H}_{3}\right), 3.52-3.58\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) \text {, } \\ & 3.80-3.86\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{HHH}_{\mathrm{HH}}=5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.50-4.65\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArOCH} \underline{H}_{2}\right), \\ & 6.93-7.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F19	$\begin{aligned} & 1.24,1.26\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \underline{H}_{3}\right), 3.52-3.58\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH} \mathrm{H}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), \\ & \quad 3.80-3.86\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.50-4.65\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{NCH}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArOC\mathrm {H}_{2}),7.11,}\right. \\ & 7.14\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.30,8.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3}{ }_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right) \end{aligned}$
F20-21	see ref 6
F22	1.51 (s, 9H, C($\left.\left.\mathrm{CH}_{3}\right)_{3}\right), 2.38$ (s, 6H, $\left.\operatorname{Ar}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.20$ (s, 1H, Ph), 7.75 (s, 2H, Ph)
F23	$1.23-1.30\left(\mathrm{~d}, 6 \mathrm{H}^{-}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3} \bar{J}_{2}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.87-3.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH} \underline{L}_{2}\right), 7.30-7.37\right.$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.11-8.1 \overline{9}\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}\right.$, Ph $)$
F24	$1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.45-7.54\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.12-8.20$ (d, $2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}$, Ph
F25	$\begin{aligned} & 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.91-4.02\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{Ar}\left(\mathrm{OCH}_{3}\right)_{2}\right), 6.94-7.04\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 8.05-8.20 \\ & (\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F26	$\begin{aligned} & 0.78-0.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.42-1.51\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.78-2.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.07-4.20 \\ & \left(\mathrm{qd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.92-7.02\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.32-8.40\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=9 \mathrm{~Hz}, \mathrm{Ph}\right) \end{aligned}$
F27	$0.77-0.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.72-2.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.94-4.02\left(\mathrm{~d}, 6 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right)_{2}\right), 6.91-7.01$ (d, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \overline{\mathrm{~Hz}}, \overline{\mathrm{Ph}}\right), 8.08-8.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$
F28	$\begin{aligned} & 0.73-1.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~s}, 6 \mathrm{H}, \operatorname{Ar}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.73-2.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}) \text {, } \\ & \quad 7.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F29	$0.64-1.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2}\right), 2.68-2.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.97-7.00$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}, \mathrm{Ph}\right), 8.18-8.56\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8 \mathrm{~Hz}, \mathrm{Ph}\right)$
$\begin{aligned} & \text { F30 } \\ & \text { F31 } \end{aligned}$	$0.78-1.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.73-2.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.94\left(\mathrm{~s}, 9 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right)_{3}\right), 7.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph})$ $0.70-1.02\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.59-1.77\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.60-2.71\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \operatorname{ArCH} 2\right)$, 2.80-2.90 (m, 1 $\overline{\mathrm{H}, \mathrm{NCH}}$), $3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.28-7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3}{ }^{\mathrm{JHH}}=8 \overline{\mathrm{~Hz}}, \mathrm{Ph}\right), 8.12-8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}\right.$, Ph)
F32	$\left.\left.\begin{array}{l} 0.79-0.94\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.26-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.57-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.63-2.71 \\ \left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \operatorname{ArCH}\right. \\ \text { a } \end{array}\right), 2.78-2.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.23-7.34\right)$
F33	$\begin{aligned} & 0.83-0.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2}\right), 2.74-2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81,3.85\left(\mathrm{~s}-\mathrm{s}, 6 \mathrm{H}, \operatorname{Ar}\left(\mathrm{OCH}_{3}\right) 2\right), 6.45-6.61 \\ & (\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.45+7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
F34	$0.62-0.91$ (m, 4H, CH2CH2 ${ }^{2}$), 2.75-2.87 (m, 1H, NCH), $3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.94-7.93$ (m, 9H, Ph)
F35	$0.68-0.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.74-2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NC} \underline{\mathrm{H}}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.53-3.59\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right)$, $3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3 . \overline{80}-3.87\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{H}}=4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), \overline{5} .33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 7.24-7.91(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph})$
F36	$\begin{aligned} & 0.69-0.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{CH}_{2}\right), 2.74-2.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52-3.59\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), \\ & 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.79-3.86\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}^{2}=5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArOC}-\underline{H}_{2}\right), 7.11, \\ & 7.13\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 8.29,8.32(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ph}) \end{aligned}$

$\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.0-2.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 3.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $3.99-4.16\left(\mathrm{qd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, \overline{\mathrm{O}} \underline{\mathrm{H}}_{2}\right)$.

Compound \mathbf{F} can be synthesized by acetylation of pyrrolidine-2,4-dione followed by the aroyl group's migration (14) or
reaction of aroyl acetates with N-alkyl aminoacetates (12). We preferred the latter method to prepare the target products B1 for its less toxic reagents and greater convenience. Intermediate \mathbf{D} was reacted with \mathbf{E} in refluxing absolute xylene to give the

Table 4. Herbicidal Activity of Compounds (Percent Inhibition)

compd	B. campestris root test		E. crus-galli cup test	
	$10 \mu \mathrm{~g} / \mathrm{mL}$	$100 \mu \mathrm{~g} / \mathrm{mL}$	$10 \mu \mathrm{~g} / \mathrm{mL}$	$100 \mu \mathrm{~g} / \mathrm{mL}$
F1 ${ }^{\text {a }}$	15 ± 1.1	62 ± 2.0	77 ± 0.3	77 ± 1.2
F2 ${ }^{\text {a }}$	8 ± 0.6	86 ± 1.2	77 ± 0.2	78 ± 1.6
F3 ${ }^{\text {a }}$	3 ± 1.0	59 ± 2.1	77 ± 0.7	78 ± 0.6
F4 ${ }^{\text {a }}$	12 ± 0.0	71 ± 1.5	80 ± 0.4	80 ± 1.1
F5	8 ± 0.2	82 ± 2.7	79 ± 1.2	80 ± 0.4
F6	24 ± 2.1	34 ± 1.5	68 ± 2.1	76 ± 0.9
F7	3 ± 0.8	81 ± 0.8	22 ± 1.0	42 ± 0.8
F8	0	74 ± 0.6	0	39 ± 1.5
F9	0	85 ± 1.2	28 ± 1.1	44 ± 1.0
F10	10 ± 0.5	54 ± 1.2	74 ± 0.8	76 ± 1.4
F11	61 ± 2.3	69 ± 0.5	0	0
F12	60 ± 1.3	62 ± 0.8	0	64 ± 1.5
F13	60 ± 2.3	86 ± 0.6	27 ± 0.2	57 ± 1.0
F14	14 ± 3.0	29 ± 1.1	5.7	12 ± 2.1
F15	27 ± 2.8	69 ± 1.3	78 ± 0.4	80 ± 1.3
F16	0	81 ± 1.1	57 ± 0.7	67 ± 0.6
F17	7 ± 1.1	28 ± 0.2	17 ± 1.5	52 ± 1.7
F18	0	10 ± 0.5	8 ± 0.5	74 ± 1.6
F19	19 ± 2.0	51 ± 0.0	0	21 ± 1.3
F20	14 ± 2.8	88 ± 1.2	36 ± 1.3	48 ± 1.1
F21 ${ }^{\text {a }}$	5 ± 1.0	78 ± 1.3	79 ± 0.6	80 ± 1.5
F22 ${ }^{\text {a }}$	41 ± 0.5	82 ± 1.0	1.0 ± 0.3	40 ± 2.8
F23	75 ± 1.5	83 ± 1.6	10 ± 0.5	18 ± 2.4
F24	64 ± 1.2	79 ± 1.3	4 ± 0.6	18 ± 1.6
F25	58 ± 2.3	70 ± 0.3	0	59 ± 2.5
F26	0	47 ± 0.5	78 ± 1.2	79 ± 1.4
F27	69 ± 1.3	72 ± 0.3	0	65 ± 1.7
F28	70 ± 1.9	86 ± 0.6	0	29 ± 2.6
F29	35 ± 1.5	70 ± 0.9	62 ± 0.6	66 ± 2.4
F30	45 ± 1.5	60 ± 0.3	4 ± 0.5	26 ± 0.6
F31	0	75 ± 0.5	8 ± 0.6	41 ± 0.7
F32	0	57 ± 0.6	5 ± 1.4	23 ± 1.0
F33	16	77 ± 0.2	78 ± 1.1	79 ± 0.6
F34	28 ± 1.1	80 ± 0.9	58 ± 2.4	66 ± 0.6
F35	0	35 ± 0.6	4 ± 1.2	33 ± 2.0
F36	19 ± 2.0	51 ± 1.1	0	12 ± 2.6

${ }^{a}$ These compounds and their herbicidal activities had been reported in ref 6 .
target compounds \mathbf{F} (Scheme 4). This reaction was assumed to go through a nucleophilic addition/elimination reaction. During this process, an intermediate amide's formation and a cyclizative condensation were involved. According to this, when the R^{2} substituent is bulky, the corresponding amide's yield would be lower ($\mathrm{R}^{2}=t$-Bu, Table 2), as a result of substituent steric hindrance.

Structure-Activity Relationship. The phenyl ring was substituted by different electron-donating groups R^{1}, and the related target products \mathbf{F} were prepared. Their herbicidal

Scheme 1^{a}

${ }^{a}$ Compounds D1-15: $\mathrm{R}^{1}=2-\mathrm{CH}_{3} ; 4-\mathrm{CH}_{3} ; 2-\mathrm{CH}_{3} \mathrm{O} ; 4-\mathrm{CH}_{3} \mathrm{O} ; 3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$; $3,5-\left(\mathrm{CH}_{3}\right)_{2} ; 4-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; 2,4-\left(\mathrm{CH}_{3}\right)_{2} ; 3,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} ; 4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 2,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} ;$ $4-n-\mathrm{Pr} ; 4-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} ; 4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} ; 3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$.

Scheme 2^{a}

${ }^{\text {a }}$ Compounds D16-19: $\mathrm{R}^{1}=2$-MEMO $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{O}\right) ; 3$-MEMO; 4-MEMO; 2, 4-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2}$.

Scheme 3^{a}

${ }^{\text {a }}$ Compounds E1-3: $\mathrm{R}^{2}=i-\mathrm{Pr} ; t$-Bu; cyclopropyl.
Scheme 4^{a}

${ }^{\text {a }}$ Compounds F1-19: $\mathrm{R}^{1}=2-\mathrm{CH}_{3} ; 4-\mathrm{CH}_{3} ; 2-\mathrm{CH}_{3} \mathrm{O} ; 4-\mathrm{CH}_{3} \mathrm{O} ; 4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$; $3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} ; 3,5-\left(\mathrm{CH}_{3}\right)_{2} ; 4-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; 4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 2,4-\left(\mathrm{CH}_{3}\right)_{2} ; 3,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} ;$ $2,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} ; 4-n$ - $\mathrm{Pr} ; 4-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} ; 2,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} ; 3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O} ; 2$ 2-MEMO; 3-MEMO; 4-MEMO. $\mathrm{R}^{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$. Compounds F2O-25: $\mathrm{R}^{1}=4-\mathrm{CH}_{3} ; 4-\mathrm{CH}_{3} \mathrm{O} ; 3,5-$ $\left(\mathrm{CH}_{3}\right)_{2} ; 4-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; 4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$. $\mathrm{R}^{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$. Compounds F2636: $\mathrm{R}^{1}=4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} ; 3,4-\left(\mathrm{CH}_{3} \mathrm{O}_{2} ; 3,5-\left(\mathrm{CH}_{3}\right) 2 ; 4-\mathrm{CH}_{3} \mathrm{O} ; 3,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} ; 4-n-\mathrm{Pr}\right.$; $4-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} ; 2,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} ; 3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O} ; 3-\mathrm{MEMO} ; 4-\mathrm{MEMO} . \mathrm{R}^{2}=$ cyclo-C3 H_{5}.
activities were tested, and the results listed in Table 4 show that when the substituents at the 2 - and/or 4 -position were smaller alkyl/alkoxy groups (such as methyl, methoxy, and ethoxy), the corresponding molecules always had a higher inhibition rate for E. crus-galli (compounds F1-6, 10, 15, 21, 26, and 33) at $10 \mu \mathrm{~g} / \mathrm{mL}$. It was also found that when the 5-position hydrogen at the phenyl ring of $\mathbf{F 1 5}$ was modified by a methoxy group, the target molecule F12 had little inhibitory effect on E. crus-galli, indicating that a meta-position group (methyl or alkoxy) would not be essential for herbicidal activity. Thus, some compounds with higher inhibition rates for E. crusgalli were further bioassayed at a dosage of $1500 \mathrm{~g} / \mathrm{ha}$ in the

Table 5. Herbicidal Activity of Compounds (Percent Inhibition) $(\text { Rate }=1500 \mathrm{~g} / \mathrm{ha})^{\text {a }}$

compd	B. campestris		A. retroflexus		E. crus-galli		D. sanguinalis	
	pre	post	pre	post	pre	post	pre	post
F1	0	44 ± 1.5	50 ± 1.1	0	84 ± 0.3	76 ± 0.7	-	-
F2	24 ± 1.1	20 ± 0.4	11 ± 2.0	0	77 ± 0.6	67 ± 1.2	-	-
F3	0	21 ± 2.1	16 ± 1.0	0	93 ± 1.0	87 ± 0.5	-	-
F4	0	6 ± 1.0	11 ± 0.6	0	98 ± 0.3	75 ± 1.3	-	-
F5	0	0	0	0	100.0 ± 0.0	19 ± 2.0	98 ± 0.4	0
F10	20 ± 2.2	16 ± 2.3	13 ± 0.5	0	71 ± 1.2	66 ± 1.3		-
F16	0	0	0	9 ± 0.6	0	0	0	0
F21	21 ± 2.0	0	23 ± 0.8	0	93 ± 0.8	66 ± 1.2	-	-
F26	6 ± 1.7	0	0	13 ± 1.5	100 ± 0.0	0	42 ± 1.8	6 ± 1.5
F27	0	0	0	0	0	3 ± 1.0	11 ± 1.0	0
F29	0	0	0	0	81 ± 0.6	0	57 ± 2.8	0
F34	0	3 ± 1.0	0	9 ± 2.0	0	15 ± 1.6	0	10 ± 1.3

[^1]Table 6. Herbicidal Activity of Compounds (Percent Inhibition)

		pre-emergence treatment	
compd	rate (g/ha)	E. crus-galli	D. sanguinalis
F1	750	68 ± 1.3	66 ± 1.2
	375	43 ± 1.1	30 ± 2.0
F2	750	22 ± 1.0	0
F4	750	92 ± 0.4	54 ± 1.6
	375	20 ± 1.8	38 ± 1.0
F5	750	98 ± 0.4	96 ± 0.4
	375	94 ± 0.6	94 ± 0.6
	187.5	52 ± 1.5	84 ± 0.7
	93.75	8 ± 2.0	22 ± 1.1
F15	750	100 ± 0.0	93 ± 0.1
	375	100 ± 0.0	77 ± 0.4
F21	97.5	34 ± 0.3	68 ± 1.7
	93.75	73 ± 1.1	0
F26	750	0	58 ± 1.0
	375	99 ± 0.2	8 ± 2.0
	750	13 ± 2.0	77 ± 0.3
F29	375	33 ± 1.6	
	187.5	69 ± 1.2	18 ± 2.1
Sulcotrione	750	7 ± 1.6	73 ± 1.0
	375	100 ± 0.0	100 ± 0.0
	750	100 ± 0.0	100 ± 0.0
	375	93 ± 1.4	100 ± 0.0
	187.5		100 ± 0.0

glasshouse on four herbs representative of monocotyledonous and dicotyledonous plants (Table 5).

From the biological assay results in Table 5, which summarize the herbicidal activity of the target compounds, some showed a much greater herbicidal activity in pre-emergence treatment than in postemergence treatment, especially for monocotyledonous plants E. crus-galli and D. sanguinalis. We analyzed the SAR according to the bioassay data in the preemergence treatment. When R^{2} was not changed, the herbicidal activity rank for R^{1} was $2-\mathrm{CH}_{3}, 4-\mathrm{CH}_{3}<4-\mathrm{CH}_{3}, 4-\mathrm{CH}_{3} \mathrm{O}<$ 4- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, 2,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$; when R^{1} was fixed, such as a 4-methoxy group, the herbicidal activity rank was cyclo- $\mathrm{C}_{3} \mathrm{H}_{5}, t-\mathrm{Bu}<$ $i-\mathrm{C}_{3} \mathrm{H}_{7}$ for E. crus-galli.

At the rate of $187.5 \mathrm{~g} / \mathrm{ha}$ (Table 6), compounds F5 and F15 exhibited good herbicidal activities in comparison with sulcotrione and made the monocotyledonous plants E. crus-galli and D. sanguinalis bleached completely. Compared with the reported compounds of this kind (15), both of them showed excellent herbicidal activities. Compound F4 exhibited excellent herbicidal activity at $1500 \mathrm{~g} / \mathrm{ha}$; however, its activity decreased remarkably when the dose was reduced to $375 \mathrm{~g} / \mathrm{ha}$.

In summary, we have demonstrated that when the substituents at the benzene ring of 3-[(α-hydroxy-substituted)benzylidene]-pyrrolidine-2,4-diones were electron-donating, especially at the 2- and/or 4-positions, these kinds of compounds presented excellent herbicidal activities. The results of the bioactivities of the new compounds against E. crus-galli and D. sanguinalis showed that some of the new compounds are effective herbicides compared to sulcotrione.

LITERATURE CITED

(1) Wu, Y.-C.; Hu, F.-Z.; Yang, H.-Z. Research and development on the inhibitors of 4-hydroxyphenylpyruvate dioxygenase. Nongyaoxue Xuebao 2001, 3, 1-10 (in Chinese).
(2) Zhu, Y.-Q.; Hu, F.-Z.; Yang, H.-Z. Reviews on 4-hydroxyphenylpyruvate dioxygenase enzyme and the structure-activity relationships of its inhibitors. Hиaxue Tongbao 2004, 67, w018/ 1-7 (in Chinese).
(3) Lee, D. L.; Prisbylla, M. P.; Cromartie, T. H.; Dagarin, D. P.; Howard, S. W.; Provan, W. M.; Ellis, M. K.; Fraser, T.; Mutter, L. C. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 1997, 45, 601-609.
(4) Lee, D. L.; Knudsen, C. G.; Michaely, W. J.; Chin, H.-L.; Nguyen, N. H.; Carter, C. G.; Cromartie, T. H.; Lake, B. H.; Shribbs, J. M.; Fraser, T. The structure-activity relationships of the triketone class of p-hydroxyphenylpyruvate dioxygenase inhibiting herbicides. Pestic. Sci. 1998, 54, 377-384.
(5) Zhu, Y.-Q.; Hu, F.-Z.; Zou, X.-M.; Yao, C.-S.; Liu, B.; Li, Y.H.; Yang, H.-Z. Synthesis of 1-benzyl-3-(α-hydroxy-(un)-substitutedbenzylidene)pyrrolidine-2,4-diones and biological activity. Chin. J. Org. Chem. 2005, 25, 419-423 (in Chinese).
(6) Zhu, Y.-Q.; Yao, C.-S.; Zou, X.-M.; Hu, F.-Z.; Liu, B.; Li, Y.H.; Yang, H.-Z. The synthesis and herbicidal activity of 1 -alkyl-3-(α-hydroxy-substituted benzylidene)pyrrolidine-2,4-diones. Molecules 2005, 10, 427-434.
(7) Meazza, G.; Scheffler, B. E.; Tellez, M. R.; Rimando, A. M.; Romagni, J. G.; Duke, S. O.; Nanayakkara, D.; Khan, I. A.; Abourashed, E. A.; Dayan, F. E. The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 2002, 60, 281-288.
(8) Zhu, Y.-Q.; Song, H.-B.; Li, J.-R.; Yao, C.-S.; Hu, F.-Z.; Zou, X.-M.; Yang, H.-Z. 1-Benzyl-3-(α-hydroxybenzylidene)pyrro-lidine-2,4-dione. Acta Crystallogr. 2004, E60, o196-o198.
(9) Zhu, Y.-Q.; Song, H.-B.; Yao, C.-S.; Gao, Y.; Hu, F.-Z.; Zou, X.-M.; Yang, H.-Z. 3-((α-hydroxy-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione. Acta Crystallogr. 2004, E6O, o599-o601.
(10) Speziale, A. J.; Jaworski, E. G. N-Substituted glycinate and alaninate eaters. J. Org. Chem. 1960, 25, 728-732.
(11) Morrison, G. C. Eur. Patent Appl. EP 0126651, 1984.
(12) Matsuo, K.; Kitaguchi, I.; Takata, Y.; Tanaka, K. Structureactivity relationships in tetramic acids and their copper(II) complexes. Chem. Pharm. Bull. 1980, 28, 2494-502.
(13) Wang, B.-L.; Duggleby, R. G.; Li, Z.-M.; Wang, J.-G.; Li, Y.H.; Wang, S.-H.; Song, H.-B. Synthesis, crystal structure and herbicidal activity of mimics of intermediates of the KARI reaction. Pest Manage. Sci. 2005, 61, 407-412.
(14) Heather, J. B.; Milano, P. D. Acylated diketonic compounds. EP 0186117, 1986.
(15) Fischer, R.; Bretschneider, T.; Santel, H. J.; Luerssen, K.; Schmidt, R. R.; Erdelen, C. Preparation of 3-benzoylpyrrolidine-2,4-diones as insecticides and herbicides. (Bayer A.-G., Germany). DE 4223015, 1992.

Received for review June 26, 2005. Revised manuscript received September 11, 2005. Accepted September 13, 2005. This work was supported by the National Key Project for Basic Research (2003CB114400), the National Natural Science Foundation of China (20572054), and the Research Foundation for the Doctoral Program of Higher Education (20020055022).

JF051510L

[^0]: * Author to whom correspondence should be addressed [telephone +86 -(0)22-23503799; fax +86-22-23503627; e-mail nk_yanghz@ 126.com].

[^1]: ${ }^{\text {a }}$ Post, postemergence; pre, pre-emergence; -, not measured.

